Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 13(2)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38391568

RESUMO

Chili powder is an important condiment around the world. However, according to various reports, the presence of pathogenic microorganisms could present a public health risk factor during its consumption. Therefore, microbiological quality assessment is required to understand key microbial functional traits, such as antibiotic resistance genes (ARGs). In this study, metagenomic next-generation sequencing (mNGS) and bioinformatics analysis were used to characterize the comprehensive profiles of the bacterial community and antibiotic resistance genes (ARGs) in 15 chili powder samples from different regions of Mexico. The initial bacterial load showed aerobic mesophilic bacteria (AMB) ranging between 6 × 103 and 7 × 108 CFU/g, sporulated mesophilic bacteria (SMB) from 4.3 × 103 to 2 × 109 CFU/g, and enterobacteria (En) from <100 to 2.3 × 106 CFU/g. The most representative families in the samples were Bacillaceae and Enterobacteriaceae, in which 18 potential pathogen-associated species were detected. In total, the resistome profile in the chili powder contained 68 unique genes, which conferred antibiotic resistance distributed in 13 different classes. Among the main classes of antibiotic resistance genes with a high abundance in almost all the samples were those related to multidrug, tetracycline, beta-lactam, aminoglycoside, and phenicol resistance. Our findings reveal the utility of mNGS in elucidating microbiological quality in chili powder to reduce the public health risks and the spread of potential pathogens with antibiotic resistance mechanisms.

2.
Microorganisms ; 11(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37512930

RESUMO

Kosakonia cowanii strain Ch1 was isolated from Mexican chili powder, and the genome was sequenced. The genome was 4,765,544 bp in length, with an average G + C content of 56.22%, and a plasmid (pCh1) of 128,063 bp with an average G + C content of 52.50%. A phylogenetic analysis revealed a close relation with pathogenic strains; nevertheless, some virulence-related genes were absent, and this genetic characteristic may explain the fact that K. cowanii Ch1 behaved as a non-pathogenic strain when infection assays were performed on the leaves and fruits of Capsicum annuum L. Surprisingly, we observed that this bacterial strain had the ability to spread throughout serrano pepper seeds. Furthermore, K. cowanii Ch1 was evaluated for the production of volatile organic compounds (VOCs) against fungal pathogens, and the results showed that Alternaria alternata and Sclerotium rolfsii were inhibited in a radial mycelial growth assay by a mean rate of 70% and 64%, while Fusarium oxysporum was inhibited by only approximately 10%. Based on the headspace solid-phase microextraction combined with the gas chromatography mass spectrometry (HS-SPME-GC-MS), 67 potential VOCs were identified during the fermentation of K. cowanii Ch1 in TSA medium. From these VOCs, nine main compounds were identified based on relative peak area: dodecanoic acid; 3-hydroxy ethanol; 1-butanol-3-methyl; acetaldehyde; butanoic acid, butyl ester; cyclodecane; 2-butanone, 3-hydroxy; disulfide, dimethyl and pyrazine-2,5-dimethyl. Our findings show the potential of K. cowanii Ch1 for the biocontrol of fungal pathogens through VOCs production and reveal additional abilities and metabolic features as beneficial bacterial specie.

3.
Microorganisms ; 11(6)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375088

RESUMO

Heavy metal pollution is a severe concern worldwide, owing to its harmful effects on ecosystems. Phytoremediation has been applied to remove heavy metals from water, soils, and sediments by using plants and associated microorganisms to restore contaminated sites. The Typha genus is one of the most important genera used in phytoremediation strategies because of its rapid growth rate, high biomass production, and the accumulation of heavy metals in its roots. Plant growth-promoting rhizobacteria have attracted much attention because they exert biochemical activities that improve plant growth, tolerance, and the accumulation of heavy metals in plant tissues. Because of their beneficial effects on plants, some studies have identified bacterial communities associated with the roots of Typha species growing in the presence of heavy metals. This review describes in detail the phytoremediation process and highlights the application of Typha species. Then, it describes bacterial communities associated with roots of Typha growing in natural ecosystems and wetlands contaminated with heavy metals. Data indicated that bacteria from the phylum Proteobacteria are the primary colonizers of the rhizosphere and root-endosphere of Typha species growing in contaminated and non-contaminated environments. Proteobacteria include bacteria that can grow in different environments due to their ability to use various carbon sources. Some bacterial species exert biochemical activities that contribute to plant growth and tolerance to heavy metals and enhance phytoremediation.

4.
Plants (Basel) ; 12(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36771585

RESUMO

Plant-associated bacteria in heavy-metal-contaminated environments could be a biotechnological tool to improve plant growth. The present work aimed to isolate lead- and cadmium-tolerant endophytic bacteria from the roots of Typha latifolia growing in a site contaminated with these heavy metals. Endophytic bacteria were characterized according to Pb and Cd tolerance, plant-growth-promoting rhizobacteria activities, and their effect on T. latifolia seedlings exposed and non-exposed to Pb and Cd. Pb-tolerant isolates were identified as Pseudomonas azotoformans JEP3, P. fluorescens JEP8, and P. gessardii JEP33, while Cd-tolerant bacteria were identified as P. veronii JEC8, JEC9, and JEC11. They all exert biochemical activities, including indole acetic acid synthesis, siderophore production, and phosphate solubilization. Plant-bacteria interaction assays showed that P. azotoformans JEP3, P. fluorescens JEP8, P. gessardii JEP33, and P. veronii JEC8, JEC9, JEC11 promote the growth of T. latifolia seedlings by increasing the root and shoot length, while in plants exposed to either 5 mg/L of Pb or 10 mg/L of Cd, all bacterial isolates increased the shoot length and the number of roots per plant, suggesting that they are plant-growth-promoting rhizobacteria that could contribute to T. latifolia adaptation to the heavy metal polluted site.

5.
Microorganisms ; 10(11)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36363715

RESUMO

Phaseolotoxin is a major virulence factor of the bean pathogen bacterium P. savastanoi pv. phaseolicola. This toxin plays a key role in the development of the halo blight disease in bean plants. So far, the signal transduction pathways involved in the synthesis of phaseolotoxin have not been elucidated. The influence of regulation mechanisms related to the oxidative stress response, in particular the OxyR protein, it has been suggested to be involved in this process.. In this study we evaluated the role of OxyR in P. savastanoi pv. phaseolicola, mainly compared to the synthesis of phaseolotoxin and the virulence of this phytopathogen. Generation of the oxyR-mutant, pathogenicity and virulence tests, and analyses of gene expression by RT-PCR assays were performed. The results showed that OxyR exerts an effect on the synthesis of phaseolotoxin and positively influences the expression of the Pht and Pbo cluster genes. Likewise, OxyR influences the production of pyoverdine by the control of the expression of the genes encoding the PvdS sigma factor, involved in the synthesis of this pigment. This study is the first report on members of the OxyR regulon of P. savastanoi pv. phaseolicola NPS3121.

6.
Microorganisms ; 10(8)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36014094

RESUMO

Chili powder is the most frequently consumed spice in Mexican diets. Thus, the dissemination of microorganisms associated with chili powder derived from Capsicum annuum L. is significant during microbial quality analysis, with special attention on detection of potential pathogens. The results presented here describe the initial characterization of bacterial community structure in commercial chili powder samples. Our results demonstrate that, within the domain Bacteria, the most abundant family was Bacillaceae, with a relative abundance of 99% in 71.4% of chili powder samples, while 28.6% of samples showed an average relative abundance of 60% for the Enterobacteriaceae family. Bacterial load for aerobic mesophilic bacteria (AMB) ranged from 104 to 106 cfu/g, while for sporulated mesophilic bacteria (SMB), the count ranged from 102 to 105 cfu/g. Bacillus cereus sensu lato (s.l.) was observed at ca. ˂600 cfu/g, while the count for Enterobacteriaceae ranged from 103 to 106 cfu/g, Escherichia coli and Salmonella were not detected. Fungal and yeast counts ranged from 102 to 105 cfu/g. Further analysis of the opportunistic pathogens isolated, such as B. cereus s.l. and Kosakonia cowanii, using antibiotic-resistance profiles and toxinogenic characteristics, revealed the presence of extended-spectrum ß-lactamases (ESBLs) and Metallo-ß-lactamases (MBLs) in these organisms. These results extend our knowledge of bacterial diversity and the presence of opportunistic pathogens associated with Mexican chili powder and highlight the potential health risks posed by its use through the spread of antibiotic-resistance and the production of various toxins. Our findings may be useful in developing procedures for microbial control during chili powder production.

7.
Plants (Basel) ; 11(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35684220

RESUMO

The Typha genus comprises plant species extensively studied for phytoremediation processes. Recently, Pseudomonas rhodesiae GRC140, an IAA-producing bacterium, was isolated from Typha latifolia roots. This bacterium stimulates the emergence of lateral roots of Arabidopsis thaliana in the presence and absence of cadmium. However, the bacterial influence on cadmium accumulation by the plant has not been determined. Moreover, the P. rhodesiae GRC140 effect in Cd phytoextraction by T. latifolia remains poorly understood. In this work, an axenic hydroponic culture of T. latifolia was established. The plants were used to evaluate the effects of cadmium stress in axenic plants and determine the effects of P. rhodesiae GRC140 and exogenous indole acetic acid (IAA) on Cd tolerance and Cd uptake by T. latifolia. Biomass production, total chlorophyll content, root electrolyte leakage, catalase activity, total glutathione, and Cd content were determined. The results showed that Cd reduces shoot biomass and increases total glutathione and Cd content in a dose-dependent manner in root tissues. Furthermore, P. rhodesiae GRC140 increased Cd translocation to the shoots, while IAA increased the Cd accumulation in plant roots, indicating that both treatments increase Cd removal by T. latifolia plants. These results indicate that axenic plants in hydroponic systems are adequate to evaluate the Cd effects in plants and suggest that T. latifolia phytoextraction abilities could be improved by P. rhodesiae GRC140 and exogenous IAA application.

8.
Environ Geochem Health ; 44(11): 3743-3764, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35022877

RESUMO

Cadmium (Cd) is one of the most toxic heavy metals for plant physiology and development. This review discusses Cd effects on auxin biosynthesis and homeostasis, and the strategies for restoring plant growth based on exogenous auxin application. First, the two well-characterized auxin biosynthesis pathways in plants are described, as well as the effect of exogenous auxin application on plant growth. Then, review describes the impacts of Cd on the content, biosynthesis, conjugation, and oxidation of endogenous auxins, which are related to a decrease in root development, photosynthesis, and biomass production. Finally, compelling evidence of the beneficial effects of auxin-producing rhizobacteria in plants exposed to Cd is showed, focusing on photosynthesis, oxidative stress, and production of antioxidant compounds and osmolytes that counteract Cd toxicity, favoring plant growth and improve phytoremediation efficiency. Expanding our understanding of the positive effects of exogenous auxins application and the interactions between bacteria and plants growing in Cd-polluted environments will allow us to propose phytoremediation strategies for restoring environments contaminated with this metal.


Assuntos
Cádmio , Ácidos Indolacéticos , Cádmio/análise , Ácidos Indolacéticos/metabolismo , Antioxidantes , Biodegradação Ambiental , Plantas/metabolismo , Bactérias/metabolismo
9.
Braz J Microbiol ; 52(1): 349-361, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33236245

RESUMO

In this work, we isolated four Cd-tolerant endophytic bacteria from Typha latifolia roots that grow at a Cd-contaminated site. Bacterial isolates GRC065, GRC066, GRC093, and GRC140 were identified as Pseudomonas rhodesiae. These bacterial isolates tolerate cadmium and have abilities for phosphate solubilization, siderophore production, indole acetic acid (IAA) synthesis, and ACC deaminase activity, suggesting that they are plant growth-promoting rhizobacteria. Bacterial inoculation in Arabidopsis thaliana seedlings showed that P. rhodesiae strains increase total fresh weight and number of lateral roots concerning non-inoculated plants. These results indicated that P. rhodesiae strains promote A. thaliana seedlings growth by modifying the root system. On the other hand, in A. thaliana seedlings exposed to 2.5 mg/l of Cd, P. rhodesiae strains increased the number and density of lateral roots concerning non-inoculated plants, indicating that they modify the root architecture of A. thaliana seedlings exposed to cadmium. The results showed that P. rhodesiae strains promote the development of lateral roots in A. thaliana seedlings cultivated in both conditions, with and without cadmium. These results suggest that P. rhodesiae strains could exert a similar role inside the roots of T. latifolia that grow in the Cd-contaminated environment.


Assuntos
Arabidopsis/microbiologia , Cádmio/metabolismo , Cádmio/farmacologia , Raízes de Plantas/microbiologia , Pseudomonas/genética , Pseudomonas/metabolismo , Biodegradação Ambiental , Endófitos/genética , Endófitos/metabolismo , Fosfatos/metabolismo , Desenvolvimento Vegetal , Raízes de Plantas/efeitos dos fármacos , Pseudomonas/efeitos dos fármacos , Pseudomonas/isolamento & purificação , Plântula/efeitos dos fármacos , Plântula/microbiologia , Poluentes do Solo , Solubilidade
11.
Indian J Microbiol ; 58(2): 208-213, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29651180

RESUMO

Bacillus sp. strain MA04 a plant growth-promoting rhizobacteria (PGPR) showed hemolytic activity on blood agar plates, and the supernatant from liquid culture in nutrient broth at 24 h exhibited emulsification activity, suggesting the production of biosurfactants. In antagonist assays, the supernatant showed antifungal activity against phytopathogenic fungi such as Penicillium expansum, Fusarium stilboides, Sclerotium rolfsii y Rhizoctonia solani, finding a reduction of mycelial growth of all fungi tested, ranging from 35 to 69%, this activity was increased with time of culture, accomplishing percentages of inhibition up to 85% with supernatants obtained at 72 h. Then, the crude biorsurfactant (CB) was isolated from the supernatant in order to assay its antagonistic effect on the phytopathogens previously tested, finding an increase in the inhibition up to 97% at 500 mg/L of CB. The composition of CB was determined by infrared spectroscopy, identifying various functional groups related to lipopeptides, which were purified by high-performance liquid chromatography and analyzed by MALDI-TOF/TOF-MS, revealing a mixture of fengycins A and B whose high antifungal activity is been widely recognized. These results show that PGPR Bacillus sp. MA04 could also contribute to plant health status through the production of metabolites with antimicrobial activity.

12.
Microbiol Res ; 169(2-3): 221-31, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23806843

RESUMO

Pseudomonas syringae pv. phaseolicola, the causal agent of halo blight disease in bean, produces a toxin known as phaseolotoxin, whose synthesis involves the products of some of the genes found within the Pht region. This region, considered a pathogenicity island, comprises 23 genes arranged in five transcriptional units: two single-gene units (argK, phtL) and three arranged as operons (phtA, phtD, phtM), most with unknown function. In P. syringae pv. phaseolicola, maximal expression of most of the genes encoded in the Pht region and the synthesis of phaseolotoxin require the product of the phtL gene, of unknown function but that has been proposed to have a regulatory role. In order to evaluate the role of phtL gene in P. syringae pv. phaseolicola, we performed a comparative transcriptional analysis with the wild type and a phtL(-) mutant strains using microarrays. The microarray data analysis showed that PhtL regulates the expression not only of genes within the Pht region, but also alters the expression of genomic genes outside it, indicating that this gene has been integrated into the regulatory machinery of the bacterium. The expression changes of many of those genes were confirmed by RT-PCR. This study also demonstrated the importance of the PhtL protein in the process of iron response, and suggests that the effect of PhtL on the expression of pathogenicity related, respiration and oxidative stress genes, observed in this study, appears to be indirect through its influence on the Fur protein expression.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Ornitina/análogos & derivados , Pseudomonas syringae/genética , Proteínas de Bactérias/metabolismo , Ilhas Genômicas , Dados de Sequência Molecular , Família Multigênica , Ornitina/biossíntese , Pseudomonas syringae/metabolismo
13.
BMC Microbiol ; 13: 81, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23587016

RESUMO

BACKGROUND: Low temperatures play key roles in the development of most plant diseases, mainly because of their influence on the expression of various virulence factors in phytopathogenic bacteria. Thus far, studies regarding this environmental parameter have focused on specific themes and little is known about phytopathogenic bacteria physiology under these conditions. To obtain a global view regarding phytopathogenic bacteria strategies in response to physiologically relevant temperature changes, we used DNA microarray technology to compare the gene expression profile of the model bacterial pathogen P. syringae pv. phaseolicola NPS3121 grown at 18°C and 28°C. RESULTS: A total of 236 differentially regulated genes were identified, of which 133 were up-regulated and 103 were down-regulated at 18°C compared to 28°C. The majority of these genes are involved in pathogenicity and virulence processes. In general, the results of this study suggest that the expression profile obtained may be related to the fact that low temperatures induce oxidative stress in bacterial cells, which in turn influences the expression of iron metabolism genes. The expression also appears to be correlated with the profile expression obtained in genes related to motility, biofilm production, and the type III secretion system. CONCLUSIONS: From the data obtained in this study, we can begin to understand the strategies used by this phytopathogen during low temperature growth, which can occur in host interactions and disease development.


Assuntos
Pseudomonas syringae/fisiologia , Estresse Fisiológico , Transcriptoma , Temperatura Baixa , Análise em Microsséries , Pseudomonas syringae/efeitos da radiação
14.
BMC Microbiol ; 11: 90, 2011 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-21542933

RESUMO

BACKGROUND: Pseudomonas syringae pv. phaseolicola, the causal agent of halo blight disease in beans, produces a toxin known as phaseolotoxin, in whose synthesis participate a group of genes organized within the genome in a region known as the "Pht cluster". This region, which is thought to have been acquired by horizontal gene transfer, includes 5 transcriptional units, two monocistronic (argK, phtL) and three polycistronic (phtA, phtD, phtM), whose expression is temperature dependent. So far, the regulatory mechanisms involved in phaseolotoxin synthesis have not been elucidated and the only well-established fact is the requirement of low temperatures for its synthesis. In this work, we searched for regulatory proteins that could be involved in phaseolotoxin synthesis, focusing on the regulation of the phtD operon. RESULTS: In this study we identified the global regulator IHF (Integration Host Factor), which binds to the promoter region of the phtD operon, exerting a negative effect on the expression of this operon. This is the first regulatory protein identified as part of the phaseolotoxin synthesis system. Our findings suggest that the Pht cluster was similarly regulated in the ancestral cluster by IHF or similar protein, and integrated into the global regulatory mechanism of P. syringae pv. phaseolicola, after the horizontal gene transfer event by using the host IHF protein. CONCLUSION: This study identifies the IHF protein as one element involved in the regulation of phaseolotoxin synthesis in P. syringae pv. phaseolicola NPS3121 and provides new insights into the regulatory mechanisms involved in phaseolotoxin production.


Assuntos
DNA Bacteriano/metabolismo , Fatores Hospedeiros de Integração/metabolismo , Óperon , Ornitina/análogos & derivados , Regiões Promotoras Genéticas , Pseudomonas syringae/genética , Pseudomonas syringae/metabolismo , Regulação para Baixo , Regulação Bacteriana da Expressão Gênica , Ornitina/biossíntese , Ornitina/genética , Ligação Proteica
15.
Microbiology (Reading) ; 156(Pt 7): 2102-2111, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20360175

RESUMO

We generated a conditional CCase mutant of Bacillus subtilis to explore the participation in vivo of the tRNA nucleotidyltransferase (CCA transferase or CCase) in the maturation of the single-copy tRNA(Cys), which lacks an encoded CCA 3' end. We observed that shorter tRNA(Cys) species, presumably lacking CCA, only accumulated when the inducible Pspac : cca was introduced into an rnr mutant strain, but not in combination with pnp. We sequenced the tRNA 3' ends produced in the various mutant tRNA(Cys) species to detect maturation and decay intermediates and observed that decay of the tRNA(Cys) occurs through the addition of poly(A) or heteropolymeric tails. A few clones corresponding to full-size tRNAs contained either CCA or other C and/or A sequences, suggesting that these are substrates for repair and/or decay. We also observed editing of tRNA(Cys) at position 21, which seems to occur preferentially in mature tRNAs. Altogether, our results provide in vivo evidence for the participation of the B. subtilis cca gene product in the maturation of tRNAs lacking CCA. We also suggest that RNase R exoRNase in B. subtilis participates in the quality control of tRNA.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Exorribonucleases/metabolismo , Mutação , RNA Nucleotidiltransferases/genética , Processamento Pós-Transcricional do RNA , RNA de Transferência de Cisteína/metabolismo , Bacillus subtilis/química , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Sequência de Bases , Exorribonucleases/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , RNA Nucleotidiltransferases/metabolismo , RNA de Transferência de Cisteína/química , RNA de Transferência de Cisteína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA